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Abstract: The finite difference frequency domain (FDFD) method is very suitable for working out narrowband problems and 

resonance problems. However, the FDFD method needs to solve a large complex sparse matrix equation. With the increase of 

computing scale, the dimension of matrix will increase rapidly, which is difficult to simulate. For improving the computational 

efficiency of solving the large complex sparse matrix equation and extend the application scope of the FDFD method, a fast 

parallel FDFD method on the basis of message passing interface (MPI) shared memory technology is proposed in this paper, 

which is used to solve the electromagnetic scattering problems of electrically large targets. Based on the conjugate gradient 

iterative algorithm, the large complex sparse matrix is reasonably distributed to each process according to the unequal row 

allocation scheme, so as to guarantee the load balancing of each process. In addition, the intermediate vectors utilized in total 

processes are stored in the shared memory of MPI, which reduces the communication time and the consumption of computer 

memory. The proposed parallel FDFD method is employed to solve the bistatic RCS of the PEC sphere, composite Von warhead 

and an automobile, compared with the serial FDFD method, the parallel FDFD method greatly improves the computational 

efficiency when the memory is not increased much. 

Keywords: FDFD, Complex Sparse Matrix, Conjugate Gradient Iteration, MPI, Shared Memory 

 

1. Introduction 

The finite difference time domain (FDTD) method is very 

popular in computational electromagnetics. It solves 

Maxwell’s equations in the time domain and is very suitable 

for solving broadband electromagnetic problems [1]. 

However, when dealing with the electromagnetic problem 

with resonant structure, the FDTD method requires lots of 

time iterations to guarantee the accuracy of the simulation. 

Besides, the time step used in the FDTD method is 

constricted by the CFL condition [2], it is difficult for FDTD 

method to solving long pulse electromagnetic problems. For 

example, the duration of the E3 (late-time) waveform for the 

high altitude electromagnetic pulse (HEMP) is about 400s, 

while the grid size of the target is meter-scale. Because of the 

restriction of the stability criterion, the time step of the 

FDTD method should be nanosecond, then hundreds of 

millions of time steps need to be iterated to complete the 

simulation [3]. 

The FDFD method applies the differential Maxwell 

equation to describe electromagnetic field relationships. 

The central difference is employed to discretize the spatial 

partial derivative, and the time harmonic factor is used to 

replace the time partial derivative. Afterwards, the 

electromagnetic scattering properties of targets at a certain 

frequency can be acquired by solving the sparse matrix 

equation [4]. The FDFD method is not limited by the 

stability condition, so it has a great advantage in dealing 

with electromagnetic problems such as resonance and long 

pulse. In recent years, FDFD method has also been widely 

used in periodic structures [4], microstrip structures and 

waveguides [10, 13], long-path propagation [12], the band 

gap of the photonic crystal [5], bioelectromagnetic 
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uncertainty analysis [15], etc. Researchers are also studying 

the absorbing boundary condition [11], fast algorithm of the 

FDFD method [14, 16]. 

However, the FDFD method needs to solve a large 

complex sparse matrix equation. With the increase of 

computing scale, the dimension of matrix will increase 

rapidly, which is difficult to simulate. For improving the 

computational efficiency of solving the large complex 

sparse matrix equation and extend the application scope of 

the FDFD method, the parallel FDFD method is proposed 

in this paper. Based on the conjugate gradient method, a 

shared memory technology of the message passing 

interface (MPI) is adopted in the FDFD method, and the 

large sparse matrix is allocated reasonably to each process. 

Then, the load balancing is ensured and the solution 

efficiency of the large complex sparse matrix equation is 

improved. 

The rest of this paper is structured as follows. The FDFD 

algorithm is described in Section II. The parallel FDFD 

scheme is explained in Section III. Its accuracy and 

efficiency are proved in details in Section IV. Section V 

closes the paper with some conclusions. 

2. Review of the FDFD Method 

The 3D Maxwell equation in frequency domain is 

0
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where E, H represents electric field and magnetic field in the 

calculation region, respectively. ω is the angular frequency. µr, 

µ0, εr, ε0 represents relative permeability, permeability of 

vacuum, relative permittivity and permittivity of vacuum, 

respectively. 

The Yee’s cells are adopted to discretize the FDFD 

computation domain, and electric field sampling points and 

magnetic field sampling points are staggered with each 

other. Each electric field is surrounded by four magnetic 

fields, and each magnetic field is also surrounded by four 

electric fields. 

In the Cartesian coordinate system, the discretization 

equation related to the x direction’s electric field 

 in (1) is 
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Similarly, we can get the other components of the electric 

field and magnetic field by discretizing (1) using central 

difference method. Equation (2) contains both electric field 

and magnetic field, for purpose of reducing the computational 

complexity, we substitute the difference equations for Hy and 

Hz into (2). Then, we can get an iterative equation containing 

only the electric field. For example, the FDFD iterative 

equation for electric field node ( )1 / 2, ,xE i j k+  is as 

follows: 
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As can be seen from (3), the equation of each electric field 

involves its own node and its twelve adjacent nodes. And the 

twelve nodes are four Ex nodes, four Ey nodes and four Ez 

nodes respectively, as shown in Figure 1. 

 
(a) Difference equation of electric field node Ex. 

 
(b) Basic equation of electric field node Ex. 

Figure 1. Peripheral nodes involved in different situations of electric field 

nodes. 

where the coefficient are as follows, which are related to the 

grid size and the medium parameters. 

( )1/ 2, ,xE i j k+
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Similarly, the FDFD iterative equations for the other electric 

field components can be obtained. By combining the FDFD 

equations corresponding to all electric field nodes, the solution of 

the field in the FDFD calculation domain can be simplified to the 

solution of the matrix equation , where A  is the 

coefficient matrix composed of the coefficients in (4), x is the 

vector formed by the electric field nodes to be solved in the 

computational domain, and b is the excitation source vector. 

3. Fast Solution of Large Complex Sparse 

Matrix Equations 

3.1. Conjugate Gradient Iteration 

The FDFD method can be transformed into the form of the 

matrix equation x b⋅ =A , where the coefficient matrix A  is 

a complex sparse matrix. To reduce the consumption of 

computing resources, the format of Coordinate (COO) [6] is 

used to store the complex sparse matrix. This format stores 

only the row, column and value of each non-zero element for 

the sparse matrix, which is very efficient. Because A  is not a 

special matrix such as triangular matrix and banded matrix, etc. 

the existing efficient iterative solvers are not suitable. 

Therefore, in this paper, the conjugate gradient method (CGM) 

of complex matrix is used to solve the matrix equation [7, 8], 

and the specific steps are as follows [9]: 

(i) Initialization, set initial value r0 and convergence 

accuracy err: 

0 0
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r x b
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where +
A is the conjugate transpose of matrix A . 

(ii) Iteration (n = 1, 2, 3, 4…) 
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(iii) Make a judgment after each iteration. Once

  x b b err− ≤A , output nx and finish the iteration. 

Otherwise, continue with step (ii). 

3.2. Parallel Algorithm of Conjugate Gradient Iteration 

Based on MPI 

It can be seen from the above section that the conjugate 

gradient algorithm can greatly improve the computational 

efficiency of matrix equations by transforming the solution of 

matrix equations into simple sparse matrix vector 

multiplication, vector inner product and vector addition and 

subtraction. However, when the electrical size of the 

calculated target increases, the scale of the coefficient matrix 

also increases. On the one hand, it will lead to a sharp increase 

in the amount of computation and an increase in the 

computational resources consumed by each iteration. On the 

other hand, it makes the convergence of iteration worse, that is, 

it needs more iterations to complete the computation. In order 

to improve efficiency, parallel computing based on MPI is a 

better solution. However, due to the sparsity of the coefficient 

matrix, it is not feasible to use the parallel scheme of dense 

matrix partition by block. This is because the distribution of 

nonzero elements in the coefficient matrix is not uniform, and 

partition by block will lead to unbalanced load, which affects 

the parallel efficiency. In addition, because the number of 

nonzero elements in each row of the coefficient matrix is not 

equal, the common equal row allocation scheme will also lead 

to load imbalance. According to the characteristics of 

coefficient matrix, a scheme of unequal row allocation 

according to the number of elements is proposed in this paper. 

The coefficient matrix is evenly distributed to each process to 

ensure load balancing. 

The idea of parallelization in this paper is: 

(i) Matrix A  is a large complex sparse matrix, whose 

most elements are zero, and only nonzero elements 

affect the calculation results. Thus, the total number of 

nonzero elements totN  is counted first. 

(ii) To guarantee the load balancing of each process, it is 

necessary to ensure that the number of nonzero 

elements allocated to each process is basically the same. 

x b⋅ =A
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Therefore, the number of nonzero elements that should 

be allocated to each process is about /totAver N n= , 

where n  stands for the number of processes. 

(iii) Following the principle of allocation by row, start to 

allocate nonzero elements to n  processes. Because the 

number of nonzero elements in each row of the 

coefficient matrix is not equal, on the premise of 

ensuring that the number of nonzero elements contained 

in each process is greater than or equal to verA , the 

number of matrix rows allocated to each process may be 

inconsistent, but it must be ensured that the nonzero 

elements in each process are all nonzero elements of a 

row or several rows in the coefficient matrix. 

The specific allocation steps are given below. 

a) Traverse all nonzero elements totN  and count the 

number of nonzero elements in each row. 

b) An auxiliary array is allocated to store the start position 

and end position of nonzero elements in each row. 

c) Start assigning rows to each process until the number 

of nonzero elements in the process is greater than or 

equal to verA . 

d) Count the remaining rows of the matrix and assign 

them to a subprocess other than the main process. 

e) Count the start and end positions of the matrix rows 

allocated by each process. 

(iv) The above processes need to be allocated only once 

before the iteration, but the intermediate vectors nr , np  

and nx used by each process need to be assigned to each 

process during the iteration. Because the intermediate 

vectors are allocated during the iteration, the 

communication time is long. In addition, intermediate 

vectors need to be fully allocated to each process, so the 

computer memory consumption will increase with the 

increase of the number of processes. Therefore, the 

shared memory technology of MPI is introduced in this 

paper to optimize the allocation of intermediate vectors. 

In our work, the intermediate vectors needed by each 

process are stored in the shared memory, this shared 

memory technology eliminates the requirement for the 

main process to send intermediate vectors to each 

subprocess, which not only reduces the memory 

occupation, but also reduces the communication time 

between processes. Figure 2 shows the storage location 

of intermediate vectors in memory. 

 
Figure 2. The intermediate vector is stored in the shared memory area. 

 
Figure 3. MPI based conjugate gradient iterative parallel algorithm. 
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(v) After the assignment is completed, each process 

obtains the corresponding local solution according to 

the process of complex conjugate gradient method, and 

the final solution nx  can be obtained by gathering the 

local solution to the main process. 

The flow chart of the parallel algorithm of conjugate 

gradient iterative based MPI is shown in Figure 3. 

4. Numerical Results 

4.1. Bistatic RCS of PEC Sphere 

The geometric diagram and grid discretization of the PEC 

sphere are shown in Figure 4, with a radius 1.0mr = , the 

frequency of the plane wave is 0.3GHzf = and its 

wavelength is 1.0mc fλ = = . The plane wave is incident 

along the z-direction, and the electric field is in the xoy plane, 

i.e. the pitch angle is 0θ = � , the azimuth angle is 0ϕ = �

, 

and the polarization angle is 0α = � . The discrete grid size is 

taken as / 20 0.05mx y z λ∆ = ∆ = ∆ = = . In all directions, the 

target boundary is extrapolated to the truncated boundary by 

10 grids. Finally, the whole calculation area is 

( 30 : 30 , 30 : 30 , 30 : 30x x y y z z− ∆ ∆ − ∆ ∆ − ∆ ∆ ). The dimension 

of the coefficient matrix is 703452, and there are 

494844716304 elements in total, including 8928744 

non-zero elements, accounting for 0.0018% of the total 

matrix elements. The calculation results of FDFD serial 

algorithm, parallel scheme and commercial software are 

shown in Figure 5. It is obvious that the calculation results of 

FDFD parallel scheme are in good agreement with FDFD 

serial algorithm and commercial software HFSS, which 

proves the correctness and feasibility of FDFD algorithm and 

parallel scheme. Table 1 shows the calculation time and 

computer memory occupied by FDFD parallel algorithm in 

solving PEC sphere when the number of processes is 

different. From Table 1, it is clear that the parallel efficiency 

of FDFD first increases and then decreases as the increase of 

the number of processes. This is because the calculation 

scale of this example is small, and the communication time 

between processes increases with the number of processes 

increases, which reduces the calculation efficiency. In 

addition, because the number of processes will also affect the 

number of conjugate gradient iterations, the parallel 

efficiency in Table 1 may be greater than 100%. In the case 

of same convergence accuracy, the number of iterations of 

serial algorithm and parallel algorithm is different. 

 
Figure 4. The model of the PEC sphere model.. 

 
Figure 5. The bistatic RCS of PEC sphere. 

 
Figure 6. Von warhead model. 

Table 1. Performance comparison of PEC sphere in different number of processes. 

Number of processes 1 (serial) 2 4 8 12 16 24 

Memory/MB 182 316 341 391 430 491 590 

Time/s 1181 600 265 123 101 90 81 

Speed up 1 1.96 4.45 9.6 11.69 13.1 14.6 

Parallel efficiency /% - 98 111 120 97 82 61 
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4.2. Bistatic RCS of Composite Von Warhead 

The composite Von warhead is composed of inner and outer 

layers, the inner layer is PEC structure, and the outer layer is 

coated with absorbing materials to reduce its RCS. The 

geometric diagram and grid discretization of the composite 

warhead are shown in Figure 6. Its dimensions are R1 = 0.1m, 

R2 = 0.15m, L1 = 0.4m, L1 = 0.4m, L2 = 0.6m. The frequency 

of the incident wave is f = 3GHz, and the plane wave is 

incident along the z-direction, that is, the incident angle are θ = 

0°, φ = 0°, and α = 0°. The medium parameters of the outer 

coating are ( )2.0 0.5r jε = − , ( )1.24 0.2r jµ = − . The grid 

size is ∆x = ∆y = ∆z = λ/20 = 5mm, the serial FDFD and 

parallel FDFD methods are adopted to calculate the bistatic 

RCS of the warhead, and the calculation results are shown in 

Figure 7. It can be seen that the calculation results of the two 

methods agree with well. Table 2 shows the results of time 

consumption and memory occupation of parallel methods 

with different process numbers. In this example, the parallel 

efficiency can reach 93% when the number of processes is 

24n = . 

 
Figure 7. Bistatic RCS of Von warhead. 

Table 2. Performance comparison of Von warhead model in different number of processes. 

Number of processes 1 (serial) 2 4 8 12 16 24 

Memory/MB 1233 2077 2104 2157 2204 2243 2347 

Time/s 5867 2763 1428 600 376 330 263 

Speed up 1.0 2.12 4.11 9.78 15.6 17.8 22.3 

Parallel efficiency /% - 106 103 122 125 111 93 

 

4.3. Bistatic RCS of an Automobile 

The geometric diagram and grid discretization of the 

automobile are shown in Figure 8. The length of automobile is 

4.2ml = , the width is 1.5mw =  and the height is 1.2mh = . 

The incident frequency in the case of lightning is 100MHzf =
and the plane wave is incident from the automobile head 

direction, i.e. along the y-direction. The incident angle are

0θ = �

, 0ϕ = �

and the polarization angle is 0α = �

and 45α = �

. 

Due to the complexity of automobile components, it is difficult 

to obtain the dielectric parameters of each component. In this 

example, the automobile components are mainly divided into 

three parts: automobile frame, tire and window glass. The 

material of automobile frame is regarded as PEC. The tire is 

mainly composed of rubber, and its corresponding dielectric 

parameters are 1.0rµ =  and 5.5rε = , The window glass is 

made of glass, and its dielectric parameters are 1.0rµ = and

3.0rε = . In order to describe the fine structures of the 

automobile, the grid size is /100 0.03mx y z λ∆ = ∆ = ∆ = = . 

The target boundary is extrapolated to the truncated boundary 

by 30 grids, and the whole calculation area is ( 100 :100x x− ∆ ∆ , 

55 : 55y y− ∆ ∆ , 50 : 50z z− ∆ ∆ ). The serial FDFD and parallel 

FDFD methods are employed to calculate the bistatic RCS of 

the automobile with polarization angle of 0α = �

 and 45α = �

. 

The simulation results of the two polarization cases are shown 

in Figure 9 and Figure 10, respectively. It can be seen that the 

consistency between the parallel FDFD and the serial FDFD 

algorithms. 

 
(a) Geometry of the automobile model 

 
(b) Grid discretization of the automobile model 

Figure 8. The automobile model. 

Table 3. Performance comparison of the automobile model in different number of processes. 

Number of processes 1 (serial) 2 4 8 12 16 24 

Memory/MB 3645 6150 6171 6230 6277 6329 6424 

Time/s 20890 10351 4246 2311 1488 1190 927 

Speed up 1.0 2.01 4.92 9.04 14.0 17.6 22.5 

Parallel efficiency /% - 100 123 113 117 110 94 
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Figure 9. Bistatic RCS of the automobile at polarization angle 0α = � . 

 

Figure 10. Bistatic RCS of the automobile at polarization angle 45α = � . 

Table 3 shows the time and memory consumed by the 

parallel FDFD algorithm when the number of processes is 

different. It can be seen that the parallel efficiency can reach 

94% when the number of processes is 24n = . 

5. Conclusions 

Aiming at the problem that the computational efficiency of 

FDFD method is low and difficult to solve electrically large 

targets, MPI is used to parallelize the FDFD algorithm, and the 

shared memory mechanism of MPI is introduced to store the 

intermediate vector, which reduces the computational 

resources and improves the computational efficiency of FDFD 

algorithm. Numerical results show that compared with the 

serial algorithm, the parallel algorithm occupies about two 

times as much memory as the serial algorithm, but its speedup 

ratio in 24 processes can reach 22.5, and the parallel efficiency 

can reach 94%. The parallel scheme greatly improves the 

computation efficiency and application scope of FDFD 

algorithm, and provides a certain reference value for further 

improving the computation performance of FDFD algorithm. 

In this paper, we only calculate the scattering problem of the 

target by FDFD method. In future work, the coupling effect of 

the HEMP E3 pulse and the rail, the propagation of low 

frequency electromagnetic wave in the ground-ionospheric 

waveguide will be studied. 
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