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Abstract: With the increasingly penetration of nonlinear loads in the power system, power quality (PQ) has become a 

significant issue for the power utilities and end users. In order to improve the PQ, the PQ detection is essential. In this paper, a 

new method for detecting the PQ disturbances via empirical wavelet transform (EWT) and Hilbert (HT) is proposed. Firstly, 

EWT is applied to the signal for obtaining different modes. Then the instantaneous amplitude and frequency of each mode are 

calculated by using the HT. By applying it to two stationary signals and two non-stationary signals, the efficiency of the proposed 

method is evaluated. With no frequency aliasing like the S transform (ST), the proposed method presents more accurate results 

than the ST. 
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1. Introduction 

Power quality (PQ) refers to the particular electromagnetic 

phenomenon that the voltage or current of power grid deviates 

from the ideal sinusoidal waveform. These deviations account 

for the appearance of insulation failures of power equipment, 

control equipment malfunctions or line outages, which results 

in the huge economic loss of power users. The wide spread use 

of nonlinear loads such as the power electronic converters, 

electric arc furnaces and so on, leads to the PQ deterioration 

[1]. In order to improve the PQ, the PQ detection is of great 

importance since the disturbance sources can identified then 

wiped off by analyzing the PQ detection results. 

The mostly used methods for detecting the PQ disturbances 

include discrete Fourier transform (DFT) [2], wavelet 

transform (WT) [2-4], S transform (ST) [1, 5, 6], empirical 

mode decomposition (EMD) [7, 8] and so on. DFT is an 

efficient tool for analyzing the stationary signals but it is not 

suitable for analyzing the non-stationary signals due to lack of 

time information. WT decomposes the signal into several 

non-uniform frequency bands, which results in the inaccurate 

estimations of harmonics and interharmonics. Moreover, the 

predefined filters are not suitable for analyzing all types of real 

disturbed signals. ST adopts the scalable, movable and 

frequency-dependent time window and provides the visual 3D 

time frequency representation of the signal. ST has been 

successfully used to detect and classify the PQ disturbances [9, 

10]. However, ST has the drawback of frequency aliasing 

caused by the stiff window width that is inversely proportional 

to the frequency, which results in the inaccurate estimation of 

harmonics and interharmonics. An adaptive method for 

decomposing the non-stationary signals, EMD, has been 

proposed to analyze the power quality disturbances. 

Nevertheless, the mode mixing leads it difficult to identify all 

real modes in the analyzed signal. 

In order to overcome the mode mixing problem in EMD, 

Gilles proposes a new wavelet, EWT to perform the signal 

decomposition [11]. Its adaptive band-pass filter banks ensure 

eliminating the mode mixing and giving the accurate 

estimation of the analyzed signal. EWT has been utilized for 

the assessment of the single phase and three phases PQ indices 

such as the active power, reactive power and power factor and 

so on [12] [13]. However, the estimation of PQ disturbances 
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parameters such as the amplitude and frequency of each 

component, which are important for the PQ disturbances 

analysis was not involved. This paper proposes to use the 

EWT for detecting these disturbance parameters. Some 

satisfactory results were obtained. 

2. Empirical Wavelet Transform 

EWT is a new adaptive wavelet filter bank proposed by 

French scholar, Gilles. In EWT, the signal f(t) can be regarded 

as a finite sum of N+1 amplitude modulated-frequency 

modulated function (AM-FM), fk(t), (k: 0,…,N), which can be 

written as follows, 

N

0

( ) ( )k

k

f t f t
=

=∑  

( ) ( )cos( ( ))k k kf t F t tϕ=  

where Fk (t), φk
’
(t)>0        (1) 

These AM-FMs present some characteristics such as high 

amplitude and compact support in the Fourier spectrum. In 

order to extract these AM-FM modes, an adaptive EWT filter 

bank is constructed based on where the analyzed signal is 

located in the spectrum. The steps to carry out EWT are as 

follows: 

Step 1) Acquire the discrete signal f(n) and the number of 

AM-FM modes is initialized to N. 

Step 2) Obtain the Fourier spectrum of the signal f(n) and 

search it for the local maxima. If M maxima are found and M 

is less than N, reset N to M. 

Step 3) Separate the Fourier spectrum into N segments and 

define the boundaries ωi(i=1,…, N-1) of each segment as the 

center between two consective maxima. 

Step 4) Based on the filter boundaries ωi, the empirical 

scaling function ˆ( )φ ω  and the empirical wavelets ˆ ( )iψ ω  

are defined by expressions of (2) and (3), respectively. 
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γ is the ratio of the transition bandwidth to the cutoff 

frequency and its range is restrained to 

γ<min( 1
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Figure 1 shows an example of a Fourier partitioning of an 

empirical filter bank. The red line is the Fourier spectrum of 

an analyzed signal and blue lines are the Fourier transforms 

of the scaling function ˆ( )φ ω  and the wavelet function 

ˆ ( )iψ ω . The number of modes N is 4 and γ is 0.1. It can be 

clearly seen that the Fourier spectrum of the signal is divided 

into four segments. EWT filter boundaries are the limits 

between each segments. Therefore, we can construct a EWT 

filter bank adaptively based on the Fourier spectrum of the 

signal. This explains why EWT has an advantage in 

estimations of harmonics and interharmonics over the other 

window integral based methods such as WT and ST. 

Step 5) In the same way as for the classic wavelet 

transform, the approximation coefficients Wa
ε
(t) are given by 

the inner product of the signal f(t) and the scaling function ϕ(t) 

and the detail coefficients Wd,i
ε
(t) (i=1,…,N-1), given by the 

inner product with the empirical wavelets ψi(t): 

Wa
ε
(t) =< f(t),ϕ(t)>= ˆIFFT( ( ) ( ))F ω φ ω×       (6) 

Wd,i
ε
(t) =<f(t),ψi(t)>= ˆIFFT( ( ) ( ))iF ω ψ ω×     (7) 

where F(ω) is the Fourier transform of f(t) and IFFT 

represents the inverse Fourier transform. 

 

Figure 1. Example of Fourier partitioning of an empirical filter bank. 

Unlike the coefficients of the classic wavelet transform 

which has no clear physical meaning, the empirical wavelet 

coefficients directly represent the AM-FM modes in the signal. 

EWT behaves like EMD which can decompose a signal into 

some specific modes. However, it has no problems such as the 

time-consuming and iterative process and the mode mixing. 

3. Hilbert Transform 

To obtain the time-frequency representation, we apply the 
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Hilbert Transform (HT) to each AM-FM mode extracted by 

EWT method. The HT of the function f(t)is defined as (8): 

1 ( )
( ) . .f

f
H t p v d

t

τ τ
π τ

+∞

−∞
=

−∫                (8) 

where, p.v. represents the Cauchy principal value integral. The 

HT can be used to derive the analytic signal fa(t): 

( )
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θ= + =           (9) 

where, IA(t) and Iθ(t) are the instantaneous amplitude and 

phase calculated by (10) and (11), respectively. 
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The instantaneous frequency IF(t) is obtained by evaluating 

the derivative of phase Iθ(t) as (12) 
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2
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θ
π
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4. Case Study Analysis 

The performance of the proposed EWT-HT method was 

tested using the simulated waveforms generated by MATLAB. 

Four cases which include harmonics and interharmonics, 

flicker, oscillatory transient and simultaneous disturbance are 

considered. In addition, the analysis results obtained by 

EWT-HT and ST are compared to demonstrate the advantage 

of the EWT-HT method. 

4.1. Harmonics and Interharmonics 

The synthetic signal is generated by 
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cos(2 350 / 4)

x n n T +

n T n T

n T - /6 +

n T /5 +

n T /3 n T +

+0.025 n T

π π π
π π

π π π
π π π

π π π
π π

= × × ∆ +
× × ∆ + + × × ∆
− + × × ∆

× × ∆ + ×
× ∆ − + × × ∆

× × ∆ −

 (13) 

The signal is sampled at the sampling interval △T=0.2ms 

to obtain 5000 sampling points. The analyzed waveform and 

the associated instantaneous amplitude and frequency 

obtained from the EWT-HT and ST are given in Figure 2. It is 

noted that the fundamental amplitude is not shown because of 

its large value. 

It is observed in Figure 2(b)-(c) that the EWT-HT can 

accurately obtain the amplitude and frequency of each 

component in the signal. However, Figure 2(d)-(e) show the 

frequency aliasing in ST is so serious that it is difficult to 

identify different components. 

 

 

Figure 2. Detection of harmonics and interharmonics. 

4.2. Flicker 

From an electrical point of view, flicker is known as the 

voltage fluctuation which is the systematic variation of the 

voltage envelope. The flicker signal is modeled as a 

modulation of the fundamental frequency waveform as (14) 

( ) (1 cos(2 ))cos(2 50 )f fx n M f n T n Tπ π= + × × × ∆ × × ∆  (14) 
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Figure 3. Detection of flicker. 

where, Mf is the flicker factor and ff  the flicker frequency. 

In this test, Mf and ff  are 0.2 and 10Hz, respectively. The 

sampling frequency is 6.4kHz and the total number of 

samples is 3000. 

The flicker waveform is shown in Figure 3(a). In Figure 

3(b), the red line represents the extracted voltage envelope by 

EWT- HT. It matches the waveform well except for the 

skewness at both ends. Further, HT is applied to the extracted 

voltage envelope and Mf and ff  are obtained as shown in 

Figure 3(c) and Figure 3(d). Obviously, the EWT-HT method 

gives the accurate estimations of the flicker factor and 

frequency. In comparison with Figure 3(b), Figure 3(e) shows 

ST could not accurately track the changes of voltage 

envelope like EWT due to the low time resolution at the 

fundamental frequency. Figure 3(f) is the time-frequency 

contour obtained by using ST. The existence of pseudo 

frequency near the fundamental frequency confirms that ST 

has a serious spectrum leakage phenomenon. 

4.3. Oscillatory Transient 

In this section, a synthetic oscillatory transient shown as 

(15) is analyzed. 

1

1

( ) cos(2 50 ) exp( ( ) )

cos(2 ( ) )o

x n n T c n n T

f n n T

π α
π
= × × ∆ + − − ∆

× × − ∆
  (15) 

in which α is the oscillatory amplitude, c the decay coefficient, 

fo oscillatory frequency and n1 the start instant of the 

oscillatory transient. The values of α, c, fo and n1 were set to 

0.4, 20, 500 and 400, respectively. The sampling frequency is 

6.4kHz and total number of samples is 3000. Figure 4. shows 

the analyzed waveform and the oscillatory amplitude and 

frequency obtained from the EWT-HT and ST, respectively. 

From the Figure 4(b), it is observed that the oscillatory 

amplitude is accurately tracked by EWT-HT. The Figure 4(c) 

shows that the oscillatory frequency 500Hz is detected 

accurately by EWT-HT. It is also noted that the frequency 

200Hz beyond the sampling points 400~1680 is invalid since 

the corresponding amplitude is zero. Figure 4(d) shows the 

amplitude tracking accuracy of ST is lower than that of 

EWT-HT. In Figure 4(e), some pseudo frequencies are 

centered around the real oscillatory frequency. Hence, 

EWT-HT has better detection capability for transients than ST. 
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Figure 4. Detection of oscillatory transient. 

4.4. Time-Varying Simultaneous PQ Disturbance 

The proposed EWT-HT is further tested on a time-varying 

simultaneous PQ disturbance signal which starts at 120 point 

and ends at 366 point. It includes a 60% sag, 20% 2nd 

harmonic, 10% 3rd harmonic and 5% 198.5Hz interharmonic 

and 1Hz frequency deviation generated by (16). The analyzed 

waveform is shown in Figure 5 (a). In Figure 5(b), it is 

observed that the 1Hz frequency deviation is accurately 

detected by EWT-HT. Figure 5(c) and Figure 5(d) show 

EWT-HT accurately detects the variations of amplitudes and 

frequencies of fundamental harmonics, interharmonics 

components in the time interval between the 120 point to 366 

point. Figure 5(e) shows the estimated amplitudes of 3
rd

 

harmonic and 198.5Hz interharmonic obtained by ST 

fluctuate around the true value. In Figure 5(f), the frequency 

aliasing is so serious that it is difficult to distinguish the 

harmonics and interharmonics by ST. 

 

 

Figure 5. Detection of simultaneous disturbance. 
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5. Conclusion 

In this paper, the limitation of S-transform in detecting the 

power quality disturbances, such as frequency aliasing and 

slow response at the low frequency have been addressed and a 

solution with the application of a hybrid of the empirical 

wavelet transform and Hilbert transform has been presented. 

Unlike the stiff window width of S-transform, the empirical 

wavelet filter banks exhibit the agile window relevant to the 

Fourier spectrum of the input signal. Based on the convolution 

principle, the input signal is firstly adaptively decomposed 

into multiple frequency components. Furthermore, the 

time-frequency and time-amplitude curves are obtained by 

utilizing the Hilbert transform in order to estimate the 

amplitude and frequency parameters of the power quality 

disturbance signals. Simulation results show that the proposed 

method is well suitable for analyzing the single disturbance as 

well as the simultaneous disturbance. 

Steady-state and transient conditions are also discussed in 

this paper. For the analysis of steady-state signals such as 

harmonics and interharmonics, the proposed method provides 

the accurate estimations of amplitude and frequency while the 

time-varying information is precisely obtained for the analysis 

of transient signal. Therefore, the proposed method can be 

considered as a viable alternative for detecting the power 
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quality disturbances. 
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