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Abstract: Permanent magnet Synchronous machines (PMSM) provide high efficiency, compact size, robustness, lightweight, 

and low noise; these features qualify them as the best suitable machine for medical applications. Without forgetting its simple 

structure, high thrust, ease of maintenance, and controller feedback, make it possible to take the place of steam catapults in the 

future. This paper presents the synergetic control approach for PMSM. Synergetic control theory is purely analytical and is based 

on nonlinear models, provide asymptotic stability. This approach allows to reduce the chattering phenomenon. To verify the 

performance characteristics of this approach, we compare it with sliding mode. Simulation results are presented to show the 

effectiveness of the proposed control method. 
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1. Introduction 

In a modern industrialized country about 65% of electrical 

energy is consumed by electrical drives. Constant-speed, 

variable-speed or servo-motor drives are used almost 

everywhere: in industry, trade and service, house-holds, 

electric traction, road vehicles, ships, aircrafts, military 

equipment, medical equipment and agriculture [1]. 

Permanent magnet (PM) machines provide high efficiency, 

compact size, robustness, lightweight, and low noise, [2], 

these features qualify them as the best suitable machine for 

medical applications [3]. Without forgetting its simple 

structure, high thrust, ease of maintenance, and controller 

feedback, make it possible to take the place of steam 

catapults in the future [4]. The PM motor in an HEV power 

train is operated either as a motor during normal driving or as 

a generator during regenerative braking and power splitting 

as required by the vehicle operations and control strategies. 

PMSM with higher power densities are also now increasingly 

choices for aircraft, marine, naval, and space applications [2]. 

Permanent magnet synchronous motor (PMSM) has been 

attracting more and more attention in high performance 

electric drive applications since it has certain superiorities 

such as; high efficiency, high power factor, superior power 

density, large torque to inertia ratio and long life over other 

kinds of motors such as DC motors and induction motors [5]. 

However, precise control of a PMSM is not easy due to 

nonlinearities of PMSM servo systems, parameter and load 

torque variations. Thus the linear control schemes such as PI 

control cannot guarantee satisfactory performances. To get 

around this problem, various methods of nonlinear control 

methods have been developed for PMSM system, such as 

input-output linearization control [6], robust control [7], 

sliding mode control [8], back-stepping control [5], and fuzzy 

control [9] and so on. 

Sliding mode control (SMC) [1] attracts the attention of 

many researchers in the field control of electrical machines 

has been suggested as an approach for the control of systems 

with nonlinearities, uncertain dynamics and bounded input 

disturbances. The most distinguished features of the SMC 

technique are: insensitivity to parameter variations, external 

disturbance rejection but the commutations of the control at 

high frequencies induce chattering problem. This problem 

can degrade the performance of mechanical systems because 

it causes excessive energy consumption and reduces the life 

of mechanical equipment. To remedy this problem, an 

asymptotic state observer is proposed to limit the chattering 

[11]. Another solution based on synergetic control is 

introduced. This command like sliding mode control is based 
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on the basic idea that if we could force a system to a desired 

manifold with designer chosen dynamics using continuous 

control law, we should achieve similar performance as SMC 

without its main inconvenient: chattering phenomenon 

[12-13]. 

The aim of this paper is to give a comparison between 

sliding mode control (SMC) and synergetic control (SC) 

applied on PMSM based drive. 

2. PMSG Model  

The electrical model of PMSM is given by the following 

equations [14]. 

                 
qd s d

d

d d d

q qs d f
q d

q q q q

Ldi R V
i p

dt L L L

di VR L
i p i p

dt L L L L

ω

φω ω


= − + +



 = − − − +



       (1) 

Where id and iq as state variables and Vd Vq are control 

variables. 

The expression of the electromagnetic torque and the 

equation of motion of the rotor are given by the following 

equations. 
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3. Sliding Mode Control 

The sliding mode control algorithm design is to determine 

three different stages as follow [15]: 

3.1. Commutation Surface 

J. Slotine proposes a general form of equation to determine 

the sliding surface [16]. 
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( )e t : is variation of the variable to be regulated. 

( ) ( ) ( )refe t x t x t= −               (4) 

Where λ : is positive constant and r : relative degree. 

3.2. Convergence Condition 

The convergence condition is defined by the following 

Lyapunov equation. 

( ) ( ) 0s x s x <ɺ                  (5) 

3.3. Calculation Control 

The control algorithm includes two terms, the first for the 

exact linearization, and the second discontinuous one for the 

system stability.  

eq nU U U= +                     (6) 

Ueq: is calculated starting from the expression 

( ) 0s x =ɺ                        (7) 

Un: is given to guarantee the attractively of the variable to 

be controlled towards the commutation surface. Its simplest 

equation is given by: 

sgn ( ); 0nU k s x k= >               (8) 

Fig. 1 shows the diagram of the sliding mode control 

(SMC) of a PMSM supplied by voltage source inverter. 

The sliding surfaces are chosen according to the relation of 

J.Slotine and the output relative degree. 
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Figure 1. SMC scheme for PMSM. 

4. Synergetic Control Design 

Let us consider an n
th 

order nonlinear dynamic system 

described by (10): 

( , , )x f x u t=ɺ                   (10) 

In which x  represents the state vector, u  represents the 

control input vector and ( , , )f x u t represents a nonlinear 

function.  

The synergetic controller synthesis procedure is 

completely analytical, which consists of the following steps 

[13], [17-18]: 

� Start by defining a macro-variable as a function of the 

state variables, for a dynamical system described by 

equation (10): 

( , )x tψ ψ=                    (11) 
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The control will force the system to operate on the 

manifold 0ψ = .The designer can select the characteristics 

of this macro-variable according to the control specifications 

(e.g. limitation in the control output, and so on). In the trivial 

case, the macro-variable is a simple linear combination of the 

state variables. 

� Repeat the same process defining as many 

macro-variables as control channels. 

� Fix the dynamic evolution of the macro-variables 

according to the equation: 

0,  0T Tψ ψ+ = >ɺ                 (12) 

T : designates the designer chosen speed convergence to 

the desired manifold. Differentiating the macro-variable (11) 

along (10) leads to (13): 

d
x

dx

ψψ =ɺ ɺ                       (13) 

Combining equation (10), (12) and (13), we thus obtain: 

( , , )
d

T f x n t
dx

ψ
                    (14) 

� Synthesize the control law (evolution in time of the 

control output) according to equation (14) and the 

dynamic model of the system, leads to (15): 

( ), ( , ), ,u u x x t T tψ=               (15) 

From (15), it can be seen that the control output depends 

not only on the system state variables, but also on the 

selected macro-variable and time constant T .  

 

Figure 2. SC scheme for PMSM. 

In other words, the designer can choose the characteristics 

of the controller by selecting a suitable macro-variable and a 

time constant T . 

The procedure summarized above can be easily 

implemented as a computer program for automatic synthesis 

of the control law. Moreover, the synergetic control system 

can be global stability, parameters insensitivity and noise 

suppression by suitable selection of macro-variables. 

The method described in the previous paragraph requires 

that we define the same number of macro-variables as control 

channels in the system. Thus, it requires the definition of two 

macro-variables, which are functions of the state variables as 

shown in (11). We chose these two terms: 

( ) ( )
1

2

d dref

r rref r rref

i i

k

ψ
ψ ω ω ω ω

= −
 = − − − ɺ ɺ

          (16) 

Where k is controller parameters. 

Fig. 2 shows the diagram of the synergetic control (SC) of 

a PMSM. 

5. Simulation Results 

The performances of the proposed controls were tested by 

simulation on a 1.5kw PMSG whose parameters are given in 

the appendix.  
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(a) sliding mode control. 
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(b) synergetic control 

Figure 3. Speed responses of a PMSM controlled by sliding mode and 

synergetic. 

The simulation results are obtained on the Matlab\ 

Simulink environment. 

The following figure shows the speed curve of a PMSG 

controlled by sliding mode and synergetic technics, in this 

figure we can see that the robustness tests are applied for the 

two controllers. 

However, a moderate vibration on the case of the 

synergetic controller of a magnitude less than 1N.m. we think 
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that the cause of these electromagnetic torque oscillations is 

the chattering phenomenon. 
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(a) sliding mode control. 

0 0.1 0.4 0,5 0.8 1 1,5 2
-4

-2

0

2

4

5

6

8

10

t(s)

Electromagnetic torque (N.m)

 

 

T
L

T
em

 

(b) synergetic control 

Figure 4. Electromagnetic torque curve of a PMSM controlled by sliding 

mode and synergetic. 
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(a) sliding mode control. 
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(b) synergetic control 

Figure 5. id curve of a PMSM controlled by sliding mode and synergetic. 

The id variations are illustrate in the following figure both 

for the sliding mod and synergetic controllers, we can see 

that the id oscillations at the sliding mode case are more 

important that the synergetic case. 

The iq variation of a PMSG controlled by sliding mode 

and synergetic technics are presented on the fig.6, by 

comparison between the results of application of the two 

controllers on the iq current wave, we see an important 

oscillation on the case of sliding mode controller compared 

with synergetic controller.  
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(a) sliding mode control. 
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(b) synergetic control 

Figure 6. iq curve of a PMSM controlled by sliding mode and synergetic. 

6. Conclusion 

In this paper two different control of permanent magnet 

synchronous machine (PMSG) are presented. It is a matter of 

sliding mode control and synergetic control. To compare their 

performance, many tests are performed under the same 

conditions.  

Simulations results show that the speed and the current id 

follow perfectly their references. The response of the 

electromagnetic torque and the current in both cases are 

compared. It is clear that the synergetic control reduces the 

chattering better than the sliding mode control. 

Simulation results show clearly the effectiveness of the 

synergetic control in reducing chattering problem. 



26 Nourdine Bounasla et al.:  Synergetic and Sliding Mode Controls of a PMSM: A Comparative Study  

 

Nomenclature 

Vd, Vq Direct-and quadrature-axis stator voltages. 

id, iq Direct-and quadrature-axis stator current. 

Ld, Lq Direct -and quadrature-axis inductance. 

p Number of poles. 

Rs Stator resistance. 

fφ  Rotor magnet flux linkage. 

rω  Mechanical rotor speed. 

J  Inertia. 

f  Damping coefficient. 

Tem Electromagnetic torque. 

TL Load torque. 

Appendix 

Table 1. PMSM Parameters 

Components Values 

Rs 1.4 Ω 

Ld 0.0066 H 

Lq 0.0058 H 
fφ

 0.1546 Wb 

f 38.818e-5 Nm/rad 

J 1.76e-3 kg.m.s 

p 3 

TL 5 Nm 
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