

Journal of Electrical and Electronic Engineering
2020; 8(2): 42-46

http://www.sciencepublishinggroup.com/j/jeee

doi: 10.11648/j.jeee.20200802.11

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)

Embedded Software Optimization for Computation -
Intensive Applications

Amitkumar Mistry
1
, Rahul Kher

2, *

1Object Video Labs, McLean, USA
2Department of Electronics & Communication Engg, G H Patel College of Engg & Tech, Vallabh Vidyanagar, India

Email address:

*Corresponding author

To cite this article:
Amitkumar Mistry, Rahul Kher. Embedded Software Optimization for Computation - Intensive Applications. Journal of Electrical and

Electronic Engineering. Special Issue: Soft Computing Methods for Electrical and Electronics Engineering Applications.

Vol. 8, No. 2, 2020, pp. 42-46. doi: 10.11648/j.jeee.20200802.11

Received: April 20, 2020; Accepted: May 9, 2020; Published: May 27, 2020

Abstract: Optimization metrics for compiled code are not always measured in execution clock cycles on the target architecture.

Modern cellular telephone or wireless devices, which may download executables over a wireless network connection or backhaul

infrastructure, it is often advantageous for the compiler to reduce the size of the compiled code that must be downloaded to the

wireless device. By reducing the size of the code, savings are achieved in terms of bandwidth required for each wireless point of

download. These are metrics correlated to the dynamic run-time behaviour of not only the compiled code on the target processor,

but also the underlying memory system, caches, DRAM, and buses, etc. Despite new generation of embedded systems are getting

innovative and computationally powerful with upcoming embedded processors, the market demands more

computational-intensive embedded software to be developed on embedded systems. It is very essential to implement efficient

embedded software to meet the market demand of embedded systems. These embedded systems are special-purpose computing

systems and built to perform very specific embedded applications. And, these embedded applications mainly use three key

resources of embedded systems: (1) CPU (2) Run-time memory (3) Persistent memory i.e. NAND/NOR flash memory. This

paper summarizes several effective embedded software optimization techniques to optimize CPU usage, Run-time memory, and

Persistent memory.

Keywords: System-on-Chip (SoC), CPU, Run-Time Memory, Persistent Memory, Optimization Techniques

1. Introduction

Mostly, the embedded systems do not have much freedom

to choose most powerful processors to develop applications

flexibly and they often have very limited resources are

available. Therefore, the effective embedded software

optimization techniques are so important to use the

embedded systems’ resources efficiently. These embedded

software optimization techniques bring multiple advantages:

(1) Use the embedded systems’ resources efficiently (2)

Allow to improvise existing functionalities (3) Add

functionalities to upgrade the systems (4) Lower the power

consumption of embedded systems. Including these

techniques in design and implementation of embedded

software from very beginning is important to meet the

requirements and allow flexibilities to improvise and add

more functionalities later. In this paper, we propose variety of

optimization techniques to utilize CPU, Run-time memory,

and Persistent memory.

With the advance of system level integration and

system-on-chip, the high-tech industry is now moving toward

multiple-core parallel embedded systems using

hardware/software co-design approach. To design and

optimize an embedded system and its software is technically

hard because of the strict requirements of an embedded

system in timing, code size, memory, low power, security, etc.

while optimizing a parallel embedded system makes research

even more challenging. The loops should be focused more

because they are usually the most critical parts to be

optimized in digital signal processing (DSP) or any

computation-intensive applications. The basic idea of fully

43 Amitkumar Mistry and Rahul Kher: Embedded Software Optimization for Computation- Intensive Applications

parallelizing nested loops not only minimizes the code size

overhead but the technique based on multidimensional

retiming, any uniform nested loops can be transformed with

minimal overhead such that all the computations in the new

loop body can be executed simultaneously [1].

Image processing on a Digital Signal Processor (DSP)

often requires image data to be stored in external memory,

because the amount of fast on-chip memory is usually very

limited. Processing images in external memory causes

significant performance drawbacks. A double buffering

method using Direct Memory Access (DMA), called

Resource Optimized Slicing (ROS-DMA), may be used

instead of a Level 2 (L2) data cache. The idea of ROS-DMA

is to transfer image slices into small intermediate buffers of

fast internal memory, where the processing can be completed

utilizing the full processing power. Use of DMA enables the

data transfers and the processing to be accomplished in

parallel. The method has the advantage of a modular

implementation, making it easy to re-use components for

various image processing operations. The sequence of

transfers is organized in such a way that use of processor

resources is optimized to achieve the shortest possible

execution time. ROS-DMA can yield substantially better

performance compared to using L2 cache. With ROS-DMA it

will be easier to obtain reliable and tight Worst-Case

Execution Times (WCETs). Test runs achieved up to six

times faster execution with ROS-DMA compared to using the

L2 cache on a C6416 DSP from Texas Instruments [2].

In [3]-[16], authors have explained various aspects pf CPU

performance optimization like energy reduction/ power

optimization in high performance computing; loop

transformation and loop alignment for memory access

optimization; data partitioning issues in on-chip and off-chip

memory; low power, multi-module, multi-port memory

design; structure packing and code vectorization. This paper

particularly discusses how to optimize the CPU, run-time

memory and persistent memory in some detail.

2. Embedded Software Optimization

Applications running on Embedded systems mainly use

three key resources (1) CPU (2) Run-time memory (3)

Persistent memory i.e. NAND/NOR flash memory. Based on

our recent work, we propose variety of optimization

techniques to optimize each individual resource to obtain

enough level of performance. In later sections, we

categorically go through each resource optimization

techniques.

2.1. CPU Optimization

In embedded systems or any general computing systems,

efficient code optimization can greatly contribute to CPU’s

performance. This paper outlines effective optimization

techniques to implement very efficient embedded code and

design approaches to run embedded applications faster on

CPU and consume less CPU. These approaches are

considered at different level during embedded application

development i.e. design, development, and upgrade level.

2.1.1. Compiler Options

The use of compiler optimization for embedded software

can itself take entire paper. To justify other optimization

techniques, we recommend basic optimization levels, specific

optimization options and architecture specific optimization

options. We highly recommend reviewing your processor’s

compiler documentation for specific optimizations.

Most compilers of embedded processors provide built-in

optimization levels to optimize the code size and execution

time as shown in Table 1. With each -O level, different set of

optimization options are automatically enabled by the

compiler making it easy for the developer to avoid picking

individual compiler options.

Table 1. Common Compiler optimization options.

Option Optimization Level

-O0 Most optimization disabled. Fast compile time.

-O1 Reduces the code size and execution time keeping compile time balanced.

-O2 Generates highly optimized code. Most commonly used optimization option.

-O3 All supported optimizations of -O2 plus more aggressively.

-Os Optimize the program space usage.

Along with -O options, following compiler options or similar supported options of your compiler can be used to fine-tune very

specific desired optimizations as shown in Table 2.

Table 2. Specific Compiler optimization options.

Option Optimization behavior

-funroll-loops Unroll loops whose number of iterations can be determined at compile time.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate

IEEE or ANSI standards.

-ffast-math

Sets -fno-math-errno, -funsafe-math-optimizations, -ffinite-math-only, -fno-rounding-math, -fno-signaling-nans and

-fcx-limited-range. It may yield faster code however it can result in incorrect output of program if it depends on exact

implementation of IEEE or ISO rules.

The architecture specific optimization options are aimed to generate optimized code for embedded processor of your

embedded system. The architecture specific optimization options are summarized in the following Table 3.

 Journal of Electrical and Electronic Engineering 2020; 8(2): 42-46 44

Table 3. Architecture Compiler options.

Option Optimization behavior

-mcpu Enables code generation for a specific processor. Some compiler allows architecture with optional extensions.

-mtune Performs optimizations for specific processors but does not cause extended instruction sets to be used (unlike -march).

-march Generates machine code for specific machine type. Allows option architecture extensions like simd, vfp etc..

-mfpu Specifies the target FPU architecture, that is the floating-point hardware available on the embedded processor.

2.1.2. Execution Timing Optimization

Optimizing for embedded system timing requires typically

its own techniques and methods. This section describes

several tips that embedded developers can follow when

optimizing their embedded applications.

Firstly, we recommend using performance profiler tools

that can provide key information of execution time of

functions and their hit count i.e. number of calls to each

function during the embedded application run. Both execution

time and hit count provides great information to target what

needs to be optimized to run the embedded application faster.

We recommend checking for following things once most

time-consuming and hit count functions are identified:

a) Restructuring loops: Function or multiple functions

using large for loops using same data should be

restructured in single function without changing

program’s output. It not only reduces the loop iterations,

but the data localization helps using cached data

effectively.

b) Loop tiling: Break loop into smaller inner loops to fit the

inner loops data in cache, which helps reducing the cache

miss drastically

c) Early exit: Transform functions or loop in a way that it

can exit early instead running unnecessary code or

iterations.

d) Aligned pointer array: Aligning pointer array ensures the

data is going to be available in the ideal location in the

memory for the processor to fetch and perform necessary

operations on them.

e) Restricted pointer array: If there will be no other pointer

pointing to the same memory address of an array pointer,

you can declare that pointer as a restrict pointer. This will

let the compiler know that it can change order of certain

operations involving pointer array to make your code

faster.

f) Data locality: Data locality is a very key method to speed

up the function execution. It’s similar to concepts

mentioned earlier: 1) Restructuring loops 2) Loop tiling.

If your function data stored and far apart from each other

in the memory, the processor will have to reach out to

different part of memory to fetch all data before

performing any mathematical computations.

g) Laying out the data in memory intelligently ensures all

data required to perform each math computation stored

close to each other and in cache at the same time in the

function, which makes data tiling very important to fit

the data in the cache once to avoid cache misses.

h) Double buffering: Embedded systems with on-chip

peripheral DMA comes very handy to get the data in and

out when the data transfer takes longer than processing

the data. This technique helps the data to be available

when CPU is ready to process next batch of the data. In

more complicated embedded systems, DMA channel

should be set up with multiple buffers so that the

processor can access the current buffer while the next is

being filled. It may involve multiple simultaneous block

transfers. For example, in addition to accessing the

current block and collecting the next block, it may be

necessary to send out the last processed block for future

use.

i) Vectorization: Embedded processors supporting Single

Instruction-Multiple Data (SIMD) could take use of this

optimization technique. In Vectorization, special set of

intrinsic functions take advantage of data parallelism.

Data parallelism occurs in when the same operation

needs to be applied to large amounts of data in a

sequentially independent manner. Vectorization enables

to pull most possible performance from Embedded

systems.

j) Hand-written assembly: It’s the most low-level

optimization technique applied to most time-consuming

functions. Embedded developer identifies the most

time-consuming functions and implements these

functions in processor specific machine code i.e.

instructions set.

k) Faster algorithms: We recommend embedded developers

to evaluate the algorithms used by their application and

replace them with faster and more efficient algorithms i.e.

search algorithm.

Figure 1. Vectorization.

2.2. Optimizing Run-time Memory

Most embedded systems constrained by limited memory

resource forcing embedded developers to use the memory

45 Amitkumar Mistry and Rahul Kher: Embedded Software Optimization for Computation- Intensive Applications

thoughtfully. Run-time memory is a key bottleneck in

embedded systems. Embedded application can fail to perform

necessary functions if required memory is not available during

its run-time. We recommend following tips to optimize the

run-time memory usage:

a) Release memory: Releasing memory is very important if

allocated memory is no longer needed. It creates more

chances to succeed next allocation requests.

b) Static array allocation: Malloc calls with constant size

arguments are replaced with a static array declaration to

optimize the allocation and free process.

c) Advance memory estimation: In advance memory

estimation technique, it assesses the memory

requirements of a module or an application in advance by

embedded developers. This tremendously optimizes with

memory allocation and free process by pre-allocating

memory for all modules. This technique helps reduce the

heap fragmentation by less frequent allocations during

run-time.

d) Scratch memory: Scratch memory concept is greatly

useful to optimize the run-time memory. We recommend

allocating one scratch memory pool for all intermediate

temporary buffers so it reduces the memory allocations,

avoids the memory fragmentation and the scratch pool

can be reused throughout entire application thus

achieving huge run-time memory optimization and

reduce malloc/free calls.

e) Data type determination: Embedded developers must

assess the data type required for their structures &

buffers. In this technique, it assesses the range of values

stored in buffers or structures. Once the range is

determined, we can make informed decision to use the

correct data type for buffers/structures. For example, the

values stored in an integer type buffer stays in range of

-10 to 120 can be converted to char type buffer. This

would result in significant memory saving of 75%.

Structure reordering and packing: Embedded applications

using thousands and hundreds of thousands C struct instances

can be reduced run-time memory usage significantly. Most

Embedded processors like ARM don’t normally start at

arbitrary byte addresses in memory. Rather, each data type

except char has an alignment requirement. Thus, compilers

will have to add padding if the data type is not aligned. One of

the important criteria to pack structure effectively by lay out

primitive data type in proper order so compiler’s padding can

be reduced. As shown in Table 4, myStruct’s float c field will

be aligned to 4-byte address so the compiler will 3 bytes

padding after char b field. By reordering structure fields could

save 8-12 bytes padded bytes for 32/64-bit processors.

Table 4. Reordering Structures.

Structure Reordering Structure

struct myStruct { struct myStruct {

int a; long h;

char b; int a;

float c; float c;

char d; int f;

char e; char b;

Structure Reordering Structure

int f; char d;

char g; char e;

long h; char g;

} }

2.3. Optimizing Persistent Memory

The persistent memory is used to store an embedded

application program and persistent state of a program i.e.

configuration. Optimizing embedded application’s program size

would reduce the persistent memory usage. We recommend

following tips to optimize the persistent memory usage:

a) Log messages: Log messages used in printf/ count are

embedded statically in the program footprint.

Unknowingly, it could take up quite a-bit space of

program memory. Shortening the messages or removing

unnecessary messages could reduce the program

footprint.

b) Shared library: On embedded systems, multiple

embedded applications using same static library would

compile and embed all machine code of static library in

all applications’ program memory. Converting static

library to shared library would perform the linking

process on the fly when embedded applications are

executed. Thus, it’s one copy of library occupies the

persistent memory space even though multiple

applications uses the same library. The -fPIC flag

enables “position independent code” generation, which

is a requirement for shared libraries. This allows the code

to be located at any virtual address at runtime.

c) Compression: Compressing configuration data of an

embedded application would reduce the persistent

memory usage. In some cases, the application can be

broken into a small program and shared object library.

This shared object library can be compressed to reduce

the program size. It would add an overhead of one-time

decompression of shared object library if the free room

in persistent memory is running very low.

d) Look-up tables: Sometimes embedded applications use

large constants lookup tables resulting program footprint

increase. Increase of program footprint would take up more

persistent memory. Deriving lookup tables at run-time

would eliminate such large lookup tables from program

footprint thus reducing the persistent memory usage.

3. Conclusion

There are various aspects of real-time embedded systems’

performance optimization like energy reduction/ power

optimization in high performance computing; loop

transformation and loop alignment for memory access

optimization; data partitioning issues in on-chip and off-chip

memory; low power, multi-module, multi-port memory

design; structure packing and code vectorization. We have

discussed about the optimization of three key resources- CPU,

run-time memory and persistent memory in some detail in

this paper.

 Journal of Electrical and Electronic Engineering 2020; 8(2): 42-46 46

References

[1] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E.
Brockmeyer, C. Kulkarni, A. Vandercappelle, and P. G.
Kjeldsberg, “Data and memory optimization techniques for
embedded systems,” ACM Transactions on Design Automation
of Electronic Systems (TODAES) April 2001.

[2] Christian Zinner, Wilfried Kubinger, “A DMA Double
Buffering Method for Embedded Image Processing with
Resource Optimized Slicing”, RTAS 2006.

[3] Bellas, N., Hajj, I. N., Polychronopoulos, C. D., and Stamoulis,
G. 2000. Architectural and compiler techniques for energy
reduction in high-performance microprocessors. IEEE Trans.
Very Large Scale Integr. Syst. 8, 3 (June), 317–326.

[4] Danckaert, K., Catthoor, F., and Man, H. D. 2000. A
preprocessing step for global loop transformations for data
transfer and storage optimization. Proceedings of the
International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, San Jose, USA.

[5] Fraboulet, A., Huard, G., and Mignotte, A. 1999. Loop
alignment for memory access optimisation. In Proceedings of
the 12th ACM/IEEE International Symposium on System-
Level Synthesis (San Jose CA, Dec.). ACM Press, New York,
NY, 70–71.

[6] Kirovski, D., Lee, C., Potkonjak, M., and Mangione-Smith, W.
1999. Application-driven synthesis of memory-intensive
systems-on-chip. IEEE Trans. Computer-Aided Des. 18, 9
(Sept.), 1316–1326.

[7] Masselos, K., Catthoor, F., Goutis, C. E., and Man, H. D. 1999.
A performance-oriented use methodology of power optimizing
code transformations for multimedia applications realized on
programmable multimedia processors. In Proceedings of the
IEEE Workshop on Signal Processing Systems (Taipeh,

Taiwan). IEEE Computer Society Press, Los Alamitos, CA,
261–270.

[8] Panda, P. R., Dutt, N. D., and Nicolau, A. 2000. On-chip vs.
off-chip memory: The data partitioning problem in embedded
processor-based systems. ACM Trans. Des. Autom. Electron.
Syst. 5, 3 (July), 682–704.

[9] Shiue, W. and Chakrabarti, C. 1999. Memory exploration for
low power, embedded systems. In Proceedings of the 36th
ACM/IEEE Conference on Design Automation (New Orleans
LA, June). ACM Press, New York, NY, 140–145.

[10] Shiue, W.-T., Tadas, S., and Chakrabarti, C. 2000. Low power
multi-module, multi-port memory design for embedded
systems. In Proceedings of the IEEE Workshop on Signal
Processing Systems (Lafayette, LA, Oct.). IEEE Press,
Piscataway, NJ, 529–538.

[11] Eric S. Raymon, “The Lost Art of Structure Packing,”
http://www.catb.org/esr/structure-packing/.

[12] Kevin Kredit, “Write Vectorized Code and Optimize Your CPU
Performance”, https:// dornerworks.com/ blog/ write-
vectorized-code-and-optimize- your-cpu- performance/.

[13] Yemliha, Taylan, "Performance and Memory Space
Optimizations for Embedded Systems" (2011). Electrical
Engineering and Computer Science - Dissertations. 300.
https://surface.syr.edu/eecs_etd/300

[14] Editor’s note. https://www.embedded.com/ achieving- better-
software-performance-through-memory-oriented-code-optimi
zation-part-1/

[15] Ph. D Thesis. Design and Optimization of Architectures for
Data Intensive Computing, available at
http://users.ece.northwestern.edu/~jay/PhD_Dissertation.pdf

[16] E. H. M. Sha, "Parallel embedded systems: optimizations and
challenges," IEEE Int. Conf. on Emerging Information
Technology, Taipei, 2005, pp. 4-9.

