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Abstract: Optimization metrics for compiled code are not always measured in execution clock cycles on the target architecture. 

Modern cellular telephone or wireless devices, which may download executables over a wireless network connection or backhaul 

infrastructure, it is often advantageous for the compiler to reduce the size of the compiled code that must be downloaded to the 

wireless device. By reducing the size of the code, savings are achieved in terms of bandwidth required for each wireless point of 

download. These are metrics correlated to the dynamic run-time behaviour of not only the compiled code on the target processor, 

but also the underlying memory system, caches, DRAM, and buses, etc. Despite new generation of embedded systems are getting 

innovative and computationally powerful with upcoming embedded processors, the market demands more 

computational-intensive embedded software to be developed on embedded systems. It is very essential to implement efficient 

embedded software to meet the market demand of embedded systems. These embedded systems are special-purpose computing 

systems and built to perform very specific embedded applications. And, these embedded applications mainly use three key 

resources of embedded systems: (1) CPU (2) Run-time memory (3) Persistent memory i.e. NAND/NOR flash memory. This 

paper summarizes several effective embedded software optimization techniques to optimize CPU usage, Run-time memory, and 

Persistent memory. 
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1. Introduction 

Mostly, the embedded systems do not have much freedom 

to choose most powerful processors to develop applications 

flexibly and they often have very limited resources are 

available. Therefore, the effective embedded software 

optimization techniques are so important to use the 

embedded systems’ resources efficiently. These embedded 

software optimization techniques bring multiple advantages: 

(1) Use the embedded systems’ resources efficiently (2) 

Allow to improvise existing functionalities (3) Add 

functionalities to upgrade the systems (4) Lower the power 

consumption of embedded systems. Including these 

techniques in design and implementation of embedded 

software from very beginning is important to meet the 

requirements and allow flexibilities to improvise and add 

more functionalities later. In this paper, we propose variety of 

optimization techniques to utilize CPU, Run-time memory, 

and Persistent memory. 

With the advance of system level integration and 

system-on-chip, the high-tech industry is now moving toward 

multiple-core parallel embedded systems using 

hardware/software co-design approach. To design and 

optimize an embedded system and its software is technically 

hard because of the strict requirements of an embedded 

system in timing, code size, memory, low power, security, etc. 

while optimizing a parallel embedded system makes research 

even more challenging. The loops should be focused more 

because they are usually the most critical parts to be 

optimized in digital signal processing (DSP) or any 

computation-intensive applications. The basic idea of fully 
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parallelizing nested loops not only minimizes the code size 

overhead but the technique based on multidimensional 

retiming, any uniform nested loops can be transformed with 

minimal overhead such that all the computations in the new 

loop body can be executed simultaneously [1]. 

Image processing on a Digital Signal Processor (DSP) 

often requires image data to be stored in external memory, 

because the amount of fast on-chip memory is usually very 

limited. Processing images in external memory causes 

significant performance drawbacks. A double buffering 

method using Direct Memory Access (DMA), called 

Resource Optimized Slicing (ROS-DMA), may be used 

instead of a Level 2 (L2) data cache. The idea of ROS-DMA 

is to transfer image slices into small intermediate buffers of 

fast internal memory, where the processing can be completed 

utilizing the full processing power. Use of DMA enables the 

data transfers and the processing to be accomplished in 

parallel. The method has the advantage of a modular 

implementation, making it easy to re-use components for 

various image processing operations. The sequence of 

transfers is organized in such a way that use of processor 

resources is optimized to achieve the shortest possible 

execution time. ROS-DMA can yield substantially better 

performance compared to using L2 cache. With ROS-DMA it 

will be easier to obtain reliable and tight Worst-Case 

Execution Times (WCETs). Test runs achieved up to six 

times faster execution with ROS-DMA compared to using the 

L2 cache on a C6416 DSP from Texas Instruments [2]. 

In [3]-[16], authors have explained various aspects pf CPU 

performance optimization like energy reduction/ power 

optimization in high performance computing; loop 

transformation and loop alignment for memory access 

optimization; data partitioning issues in on-chip and off-chip 

memory; low power, multi-module, multi-port memory 

design; structure packing and code vectorization. This paper 

particularly discusses how to optimize the CPU, run-time 

memory and persistent memory in some detail. 

2. Embedded Software Optimization 

Applications running on Embedded systems mainly use 

three key resources (1) CPU (2) Run-time memory (3) 

Persistent memory i.e. NAND/NOR flash memory. Based on 

our recent work, we propose variety of optimization 

techniques to optimize each individual resource to obtain 

enough level of performance. In later sections, we 

categorically go through each resource optimization 

techniques. 

2.1. CPU Optimization 

In embedded systems or any general computing systems, 

efficient code optimization can greatly contribute to CPU’s 

performance. This paper outlines effective optimization 

techniques to implement very efficient embedded code and 

design approaches to run embedded applications faster on 

CPU and consume less CPU. These approaches are 

considered at different level during embedded application 

development i.e. design, development, and upgrade level. 

2.1.1. Compiler Options 

The use of compiler optimization for embedded software 

can itself take entire paper. To justify other optimization 

techniques, we recommend basic optimization levels, specific 

optimization options and architecture specific optimization 

options. We highly recommend reviewing your processor’s 

compiler documentation for specific optimizations. 

Most compilers of embedded processors provide built-in 

optimization levels to optimize the code size and execution 

time as shown in Table 1. With each -O level, different set of 

optimization options are automatically enabled by the 

compiler making it easy for the developer to avoid picking 

individual compiler options. 

Table 1. Common Compiler optimization options. 

Option Optimization Level 

-O0 Most optimization disabled. Fast compile time. 

-O1 Reduces the code size and execution time keeping compile time balanced. 

-O2 Generates highly optimized code. Most commonly used optimization option. 

-O3 All supported optimizations of -O2 plus more aggressively. 

-Os Optimize the program space usage. 

Along with -O options, following compiler options or similar supported options of your compiler can be used to fine-tune very 

specific desired optimizations as shown in Table 2. 

Table 2. Specific Compiler optimization options. 

Option Optimization behavior 

-funroll-loops Unroll loops whose number of iterations can be determined at compile time. 

-funsafe-math-optimizations 
Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate 

IEEE or ANSI standards. 

-ffast-math 

Sets -fno-math-errno, -funsafe-math-optimizations, -ffinite-math-only, -fno-rounding-math, -fno-signaling-nans and 

-fcx-limited-range. It may yield faster code however it can result in incorrect output of program if it depends on exact 

implementation of IEEE or ISO rules. 

The architecture specific optimization options are aimed to generate optimized code for embedded processor of your 

embedded system. The architecture specific optimization options are summarized in the following Table 3. 
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Table 3. Architecture Compiler options. 

Option Optimization behavior 

-mcpu Enables code generation for a specific processor. Some compiler allows architecture with optional extensions. 

-mtune Performs optimizations for specific processors but does not cause extended instruction sets to be used (unlike -march). 

-march Generates machine code for specific machine type. Allows option architecture extensions like simd, vfp etc.. 

-mfpu Specifies the target FPU architecture, that is the floating-point hardware available on the embedded processor. 

 

2.1.2. Execution Timing Optimization 

Optimizing for embedded system timing requires typically 

its own techniques and methods. This section describes 

several tips that embedded developers can follow when 

optimizing their embedded applications. 

Firstly, we recommend using performance profiler tools 

that can provide key information of execution time of 

functions and their hit count i.e. number of calls to each 

function during the embedded application run. Both execution 

time and hit count provides great information to target what 

needs to be optimized to run the embedded application faster. 

We recommend checking for following things once most 

time-consuming and hit count functions are identified: 

a) Restructuring loops: Function or multiple functions 

using large for loops using same data should be 

restructured in single function without changing 

program’s output. It not only reduces the loop iterations, 

but the data localization helps using cached data 

effectively. 

b) Loop tiling: Break loop into smaller inner loops to fit the 

inner loops data in cache, which helps reducing the cache 

miss drastically 

c) Early exit: Transform functions or loop in a way that it 

can exit early instead running unnecessary code or 

iterations. 

d) Aligned pointer array: Aligning pointer array ensures the 

data is going to be available in the ideal location in the 

memory for the processor to fetch and perform necessary 

operations on them. 

e) Restricted pointer array: If there will be no other pointer 

pointing to the same memory address of an array pointer, 

you can declare that pointer as a restrict pointer. This will 

let the compiler know that it can change order of certain 

operations involving pointer array to make your code 

faster. 

f) Data locality: Data locality is a very key method to speed 

up the function execution. It’s similar to concepts 

mentioned earlier: 1) Restructuring loops 2) Loop tiling. 

If your function data stored and far apart from each other 

in the memory, the processor will have to reach out to 

different part of memory to fetch all data before 

performing any mathematical computations. 

g) Laying out the data in memory intelligently ensures all 

data required to perform each math computation stored 

close to each other and in cache at the same time in the 

function, which makes data tiling very important to fit 

the data in the cache once to avoid cache misses. 

h) Double buffering: Embedded systems with on-chip 

peripheral DMA comes very handy to get the data in and 

out when the data transfer takes longer than processing 

the data. This technique helps the data to be available 

when CPU is ready to process next batch of the data. In 

more complicated embedded systems, DMA channel 

should be set up with multiple buffers so that the 

processor can access the current buffer while the next is 

being filled. It may involve multiple simultaneous block 

transfers. For example, in addition to accessing the 

current block and collecting the next block, it may be 

necessary to send out the last processed block for future 

use. 

i) Vectorization: Embedded processors supporting Single 

Instruction-Multiple Data (SIMD) could take use of this 

optimization technique. In Vectorization, special set of 

intrinsic functions take advantage of data parallelism. 

Data parallelism occurs in when the same operation 

needs to be applied to large amounts of data in a 

sequentially independent manner. Vectorization enables 

to pull most possible performance from Embedded 

systems. 

j) Hand-written assembly: It’s the most low-level 

optimization technique applied to most time-consuming 

functions. Embedded developer identifies the most 

time-consuming functions and implements these 

functions in processor specific machine code i.e. 

instructions set. 

k) Faster algorithms: We recommend embedded developers 

to evaluate the algorithms used by their application and 

replace them with faster and more efficient algorithms i.e. 

search algorithm. 

 

Figure 1. Vectorization. 

2.2. Optimizing Run-time Memory 

Most embedded systems constrained by limited memory 

resource forcing embedded developers to use the memory 
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thoughtfully. Run-time memory is a key bottleneck in 

embedded systems. Embedded application can fail to perform 

necessary functions if required memory is not available during 

its run-time. We recommend following tips to optimize the 

run-time memory usage: 

a) Release memory: Releasing memory is very important if 

allocated memory is no longer needed. It creates more 

chances to succeed next allocation requests. 

b) Static array allocation: Malloc calls with constant size 

arguments are replaced with a static array declaration to 

optimize the allocation and free process. 

c) Advance memory estimation: In advance memory 

estimation technique, it assesses the memory 

requirements of a module or an application in advance by 

embedded developers. This tremendously optimizes with 

memory allocation and free process by pre-allocating 

memory for all modules. This technique helps reduce the 

heap fragmentation by less frequent allocations during 

run-time. 

d) Scratch memory: Scratch memory concept is greatly 

useful to optimize the run-time memory. We recommend 

allocating one scratch memory pool for all intermediate 

temporary buffers so it reduces the memory allocations, 

avoids the memory fragmentation and the scratch pool 

can be reused throughout entire application thus 

achieving huge run-time memory optimization and 

reduce malloc/free calls. 

e) Data type determination: Embedded developers must 

assess the data type required for their structures & 

buffers. In this technique, it assesses the range of values 

stored in buffers or structures. Once the range is 

determined, we can make informed decision to use the 

correct data type for buffers/structures. For example, the 

values stored in an integer type buffer stays in range of 

-10 to 120 can be converted to char type buffer. This 

would result in significant memory saving of 75%. 

Structure reordering and packing: Embedded applications 

using thousands and hundreds of thousands C struct instances 

can be reduced run-time memory usage significantly. Most 

Embedded processors like ARM don’t normally start at 

arbitrary byte addresses in memory. Rather, each data type 

except char has an alignment requirement. Thus, compilers 

will have to add padding if the data type is not aligned. One of 

the important criteria to pack structure effectively by lay out 

primitive data type in proper order so compiler’s padding can 

be reduced. As shown in Table 4, myStruct’s float c field will 

be aligned to 4-byte address so the compiler will 3 bytes 

padding after char b field. By reordering structure fields could 

save 8-12 bytes padded bytes for 32/64-bit processors. 

Table 4. Reordering Structures. 

Structure Reordering Structure 

struct myStruct { struct myStruct { 

int a; long h; 

char b; int a; 

float c; float c; 

char d; int f; 

char e; char b; 

Structure Reordering Structure 

int f; char d; 

char g; char e; 

long h; char g; 

} } 

2.3. Optimizing Persistent Memory 

The persistent memory is used to store an embedded 

application program and persistent state of a program i.e. 

configuration. Optimizing embedded application’s program size 

would reduce the persistent memory usage. We recommend 

following tips to optimize the persistent memory usage: 

a) Log messages: Log messages used in printf/ count are 

embedded statically in the program footprint. 

Unknowingly, it could take up quite a-bit space of 

program memory. Shortening the messages or removing 

unnecessary messages could reduce the program 

footprint. 

b) Shared library: On embedded systems, multiple 

embedded applications using same static library would 

compile and embed all machine code of static library in 

all applications’ program memory. Converting static 

library to shared library would perform the linking 

process on the fly when embedded applications are 

executed. Thus, it’s one copy of library occupies the 

persistent memory space even though multiple 

applications uses the same library. The -fPIC flag 

enables “position independent code” generation, which 

is a requirement for shared libraries. This allows the code 

to be located at any virtual address at runtime. 

c) Compression: Compressing configuration data of an 

embedded application would reduce the persistent 

memory usage. In some cases, the application can be 

broken into a small program and shared object library. 

This shared object library can be compressed to reduce 

the program size. It would add an overhead of one-time 

decompression of shared object library if the free room 

in persistent memory is running very low. 

d) Look-up tables: Sometimes embedded applications use 

large constants lookup tables resulting program footprint 

increase. Increase of program footprint would take up more 

persistent memory. Deriving lookup tables at run-time 

would eliminate such large lookup tables from program 

footprint thus reducing the persistent memory usage. 

3. Conclusion 

There are various aspects of real-time embedded systems’ 

performance optimization like energy reduction/ power 

optimization in high performance computing; loop 

transformation and loop alignment for memory access 

optimization; data partitioning issues in on-chip and off-chip 

memory; low power, multi-module, multi-port memory 

design; structure packing and code vectorization. We have 

discussed about the optimization of three key resources- CPU, 

run-time memory and persistent memory in some detail in 

this paper. 
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